Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses
Sensory feedback was achieved by stimulating peripheral nerve fascicles, which, in turn, allowed real-time closed-loop control of a prosthetic hand by a human subject with a transradial amputation. To restore the lost sensory feedback, four TIMEs were implanted in the median and ulnar nerve fascicles, and two stimulation sites that were able to elicit distinct and repeatable sensations on the innervation territories of the two nerves (3–5) were then selected at the end of systematic testing of all the contacts and then connected to the artificial hand sensors. Sensations were elicited in a range from slight contact to just below the reported pain threshold, to dynamically control the intensity of stimulation delivered, according to the prosthetic hand sensor readouts.
The participant controlled the prosthesis through voluntary contractions of the remaining muscles on the stump, being able to perform different (ulnar, pinch, and palmar) grasps, and hand opening by online processing of sEMG signals. The grasps were performed in terms of position control such that he was able to finely modulate the fastening and opening of the prosthetic hand.
The best part is with the nerve stimulation, the subject can distinguish between at least three different shapes, sizes, and stiffness. The stimulation was modulated at 50Hz, biphasic, and only amplitude varied.